孙成
- 作品数:1 被引量:8H指数:1
- 供职机构:中国科学院深圳先进技术研究院更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于聚类分析的心电节拍分类算法被引量:8
- 2014年
- 为提高计算机辅助心电节拍分类算法的准确率和普适性,提出一种基于聚类分析的心电节拍分类算法,该算法利用心电节拍个体内差异性较小的特性,采用两级聚类分析、抽样代表性心电节拍的方法,结合心电医师的辅助诊断,实现对心电节拍的准确分类。为了验证算法的准确性,采用国际公认的标准数据库——MIT-BIH心律失常数据库,AAMI/ANSI标准规定的心电节拍分类方法及准确率的计算方法进行仿真实验,最终总体分类准确率达到99.07%。与Kiranyaz等(KIRANYAZ S,INCE T,PULKKINEN J,et al.Personalized long-term ECG classification:A systematic approach[J].Expert Systems with Applications,2011,38(4):3220-3226.)的心电节拍分类算法相比,该算法无需进行设定的训练,且S类心电节拍分类灵敏度由40.15%提高到89.82%,显著提高了分类算法的普适性。
- 鄢羽孙成
- 关键词:聚类分析