谢彬彬
- 作品数:2 被引量:6H指数:1
- 供职机构:广东技术师范学院计算机科学学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于LDA模型的社交网络主题社区挖掘被引量:5
- 2014年
- 以微博为代表的社交网络已成为社会舆情的战略要地。对于社交网络中隐含主题社区的发掘,具有较高的商业推广和舆情监控价值。近年来,概率生成主题模型LDA(Latent Dirichlet Allocation)在数据挖掘领域得到了广泛应用。但是,一般而言,LDA适用于处理文本、数字信号数据,并不能合理地用来处理社交网络用户的关系数据。对LDA进行修改,提出适用于处理用户关系数据的Tri-LDA模型,挖掘社交网络中的主题社区。实验结果表明,基于Tri-LDA模型,进行机器学习所得到的结果基本能够反映社交网络上真实的主题社区分布情况。
- 欧卫谢赞福谢彬彬欧缤忆
- 关键词:LDA社交网络
- 一种基于TextTiling的镜头边界检测算法被引量:1
- 2016年
- 镜头边界检测是基于内容的视频检索中的关键技术,提出一种利用TextTiling方法来识别视频镜头边界的算法。通过滑动窗口对视频进行初步切割,利用主成分分析将视频帧投影到特征子空间,并在投影空间上计算相邻帧间距离,再根据相邻窗口之间的深度值确定视频镜头边界。针对TREC-2001视频测试数据集的实验结果显示,该算法检测镜头边界的平均查全率和平均查准率分别为89%和96.5%。
- 谢彬彬贾西平方刚欧卫
- 关键词:主成分分析镜头边界检测视频检索