2025年2月2日
星期日
|
欢迎来到叙永县图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
张番栋
作品数:
1
被引量:31
H指数:1
供职机构:
北京大学信息科学技术学院机器感知与智能教育部重点实验室
更多>>
发文基金:
国家自然科学基金
国家重点基础研究发展计划
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
马晓
北京大学信息科学技术学院机器感...
封举富
北京大学信息科学技术学院机器感...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
人脸
1篇
人脸识别
1篇
人脸识别方法
1篇
生物特征
1篇
生物特征识别
1篇
识别方法
1篇
子空间
1篇
小样本
机构
1篇
北京大学
作者
1篇
封举富
1篇
马晓
1篇
张番栋
传媒
1篇
智能系统学报
年份
1篇
2016
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于深度学习特征的稀疏表示的人脸识别方法
被引量:31
2016年
本文针对传统的基于稀疏表示的人脸识别方法在小样本情况下对类内变化鲁棒性不强的问题,从特征的层面入手,提出了基于深度学习特征的稀疏表示的人脸识别方法。本方法首先利用深度卷积神经网络提取对类内变化不敏感的人脸特征,然后通过稀疏表示对所得人脸特征进行表达分类。本文通过实验,说明了深度学习得到的特征也具有一定的子空间特性,符合基于稀疏表示的人脸识别方法对于子空间的假设条件。实验证明,基于深度学习特征的稀疏表示的人脸识别方法具有较好的识别准确度,对类内变化具有很好的鲁棒性,特别在小样本问题中具有尤为突出的优势。
马晓
张番栋
封举富
关键词:
生物特征识别
子空间
小样本
人脸识别
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张