文中制备了一种用于粒子分离的介电电泳微流控芯片,利用粒子介电性质不同实现粒子批量、高效分离。采用MEMS工艺,由光刻有电极的ITO玻璃基底和PDMS微通道制备而成。在此基础上,测定了当缓冲溶液的电导率为1μS/cm、交流信号电压为10 V时聚苯乙烯小球和酵母菌的正负介电泳响应,确定了两种微粒的分离条件:酵母菌细胞在1~50 k Hz时表现负介电泳响应,50 k Hz^5 MHz时表现正介电泳响应,50 k Hz为交叉频率;聚苯乙烯小球在1 k Hz^5 MHz始终表现负介电泳响应。选取10 V、5 MHz交流电压信号作为分离条件,对直径均为5μm的聚苯乙烯小球和酵母菌进行了分离,分离效率达到92.4%。
根据介电泳操作原理,设计了微环形阵列电极结构,建立了细胞分离富集芯片模型,采用COMSOL软件分析微环形阵列电极的电场分布和介电泳力方向并确定了最大和最小电场强度的位置,利用ITO玻璃和PDMS制备了细胞分离富集芯片。通过酵母菌细胞的介电泳富集实验和酵母菌细胞与聚苯乙烯小球的分离富集实验,明确了酵母菌细胞的临界频率,实现了酵母菌细胞和聚苯乙烯小球的分离富集。结果显示,在溶液电导率为60μs/cm,交流信号电压为8 Vp-p时,酵母菌细胞在1 k Hz^45 k Hz频率范围内做负介电泳运动并富集在环形内部,45 k Hz为酵母菌细胞的临界频率,在45 k Hz^10 MHz频率范围内做正介电泳运动并富集在环形边缘;1.5 MHz时聚苯乙烯小球做负介电泳运动并富集在环形内部,富集倍数达到11.66。
设计并制造了一种带有惯性聚焦结构的介电泳微流控芯片,以实现不同介电性质的粒子连续分离。采用MEMS工艺制作了介电泳微流控芯片:通道入口侧壁设置一对梯形结构使经过的粒子受惯性升力的作用聚焦到通道两侧;通道底部光刻一组夹角为90°的倾斜叉指电极产生非均匀电场,利用介电泳力和流体曳力的合力使通道两侧不同的粒子发生角度不同的偏转进入不同通道,从而实现分离。将酵母菌细胞和聚苯乙烯小球作为实验样本,分析了流速和交流电压对分离的影响,确定了二者分离的最优条件并进行分离。实验结果表明,将电导率为20μS/cm的样本溶液以5μL/min的流速注入到通道中,施加6 V_(p-p)、10 k Hz的正弦信号,酵母菌细胞沿电极运动至夹角处后沿通道中心排出,聚苯乙烯小球沿通道两侧排出,成功实现分离,平均分离效率达92.8%、平均分离纯度达90.7%。