刘洋
- 作品数:4 被引量:13H指数:2
- 供职机构:中国地质大学计算机学院更多>>
- 发文基金:国家自然科学基金湖北省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于概率模型的混合多目标算法被引量:1
- 2011年
- 对传统多目标算法NSGA-Ⅱ及模型多目标算法RM-MEDA进行了分析,并指出了二者的不足。在此基础上,提出基于概率模型的混合多目标算法,并设计了相应的建模准则用于实现两种算法的结合,使得提出的算法能够充分发挥两种算法的优势。将提出的算法与NSGA-Ⅱ算法和RM-MEDA算法在10个测试函数进行了实验对比,结果证实了算法在全局收敛性及多样性等方面有着较好的效果。
- 刘洋肖宝秋戴光明
- 通过网格改进的基于指标的进化算法
- 2012年
- 设计一种高效的演化多目标优化算法,使其能获得一组同时具有优异的收敛性和多样性的解集是一项很困难的任务。为了能高效求解多目标优化问题,在基于指标的进化算法(IBEA)的基础上:1)引入基于目标空间网格的多样性保持策略,保证算法近似前沿具有优异的分布性;2)引入反向学习机制,同时评估当前解和当前解的反向解,期望能找到一组较优的解从而加快算法收敛。通过6个标准测试函数对改进算法进行测试,其结果表明改进算法可以有效逼近真实Pareto前沿并且分布均匀。
- 肖宝秋刘洋戴光明
- 关键词:多目标优化网格
- 基于聚类中心GDA的一维像目标识别方法被引量:2
- 2009年
- 对于目标高分辨一维距离像的目标识别,给出了一种基于广义判别分析(GDA)的特征非线性映射方法,将所提取的功率谱特征参数优化后,使目标特征参数在非线性特征空间中的Fisher比增大,使用基于高斯混合模型的分类器进行目标识别。针对训练样本多时GDA计算代价大,特征提取速度慢问题,提出了一种将训练样本做聚类后使用聚类中心作为训练样本计算GDA模型参数的快速算法,使模型训练时间及其特征识别时间均有很大程度上的减少,并且识别效果也相对与抽样选择训练样本有明显提高,实验结果表明了文中所提方法的有效性。
- 孙俊戴蓓蒨刘洋
- 关键词:一维像目标识别聚类中心高斯混合模型
- 改进的NSGA-Ⅱ算法及其在星座优化设计中的应用被引量:10
- 2012年
- 针对NSGA-Ⅱ算法中的模拟二进制交叉(SBX)算子以及NSGA-Ⅱ在收敛速度及多样性保持方面性能的不足,将反向学习机制(OBL)应用到NSGA-Ⅱ的初始化和进化过程中,并引入一种改进的算术交叉算子。ZDT系列测试函数在收敛性和多样性两个方面的评价结果表明,改进的NSGA-Ⅱ算法在收敛速度、收敛性和多样性上优于NSGA-Ⅱ算法。将改进的NSGA-Ⅱ算法应用于卫星星座优化设计中,仿真结果表明改进的算法在卫星星座优化设计中比较有效。
- 肖宝秋刘洋戴光明
- 关键词:多目标优化卫星星座