针对间歇生产过程中的故障分类问题,为进一步研究故障所属类型,本文采用支持向量数据描述(support vector data description,SVDD)的方法.在多种类型的故障数据库基础上,应用SVDD建立对应故障种类的模型,利用核函数求出各个模型超球面半径;对于新的待分类故障样本,先考察其与各个种类模型超球面球心的距离,再比较此距离与半径的大小,进而确定故障所属类型,尤其是可能超出各个故障模型检测范围的待测故障样本,对其进行降幅重构迭代,确定其所属类型.该方法不但能够准确识别独立发生的故障,而且对于其他方法难以识别的多种并发的故障也能够有效地实现分类,应用于数值仿真和青霉素发酵过程实验中,验证了其有效性和准确性.
针对间歇生产过程中,采集的数据存在非高斯、非线性的特征,本文将支持向量数据描述(Support Vector Data Description,SVDD)的方法应用到间歇过程故障监测中。首先,将数据按照批次展开并进行标准化,再按照变量展开;然后,建立SVDD模型,应用核函数求出模型半径R(?)对新的待检测样本,先计算其与模型中心的距离,再与半径比较,判断它是否正常。因为SVDD可以利用核函数替代向量内积的计算,所以能够解决非高斯、非线性数据的检测问题。最后,在青霉素发酵过程监测的成功应用,验证了该方法的有效性、准确性。