何双双
- 作品数:3 被引量:7H指数:2
- 供职机构:长沙理工大学计算机与通信工程学院更多>>
- 发文基金:湖南省教育厅优秀青年基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于改进的子空间追踪算法的人脸识别被引量:2
- 2016年
- 基于稀疏表示的人脸识别中的子空间追踪(SP)算法的候选原子个数固定与稀疏度相同,因此需要已知信号的稀疏度。针对该缺点,提出一种改进的子空间追踪算法,在选择原子的过程中引入回溯迭代优化思想,候选原子个数随着迭代次数逐一增加。通过移除候选原子集中数量同样逐一增加的可信度较低的原子,使选择的原子与待识别人脸图像具有最相似的结构,能较好地重构人脸。采用稀疏表示分类(SRC)框架,分别与基于SP、SASP、正交匹配追踪(OMP)、OMP-cholesky的人脸识别相比,在ORL和Yale B人脸数据库上的实验结果表明,该算法有最高的识别率。
- 张建明何双双吴宏林熊兵
- 关键词:人脸识别正交匹配追踪子空间追踪
- 基于子空间追踪的人脸识别被引量:1
- 2016年
- 针对现有的基于稀疏表示的人脸识别方法没有更新优化选择的原子的问题,提出一种基于子空间追踪的人脸识别方法。在稀疏编码过程中的原子选择步骤中,引入回溯迭代优化思想和多原子选择方案,通过移除可信度较低的原子来更新优化候选支撑向量中选择的原子,使选择的原子与待识别人脸图像具有最相似的结构,从而在该原子上的稀疏编码系数具有较好的人脸重构能力。实验证明,与基于正交匹配追踪(OMP)算法和基于OMP-cholesky算法的人脸识别相比,该算法在ORL和Yale B人脸数据库上的算法复杂度较低且识别率均提高了约5%。
- 何双双熊兵张建明吴宏林
- 关键词:人脸识别正交匹配追踪子空间追踪
- 基于拓展稀疏表示模型和LC-KSVD的人脸识别被引量:4
- 2016年
- 为了提高人脸的识别率和识别速度及其识别的鲁棒性,提出了基于拓展稀疏表示模型和LC-KSVD(Label Consist K-SVD)的人脸识别算法。针对字典学习中只包含表示能力没有包含类别信息的问题,在原始的稀疏表示模型中添加了残差向量作为系数修正向量,使得拓展稀疏表示模型具有更强的鲁棒性;在字典学习中添加稀疏编码和分类器参数约束项,通过字典学习同时更新稀疏编码和分类器参数,使字典中包含很好的表示能力和判别分类能力。实验结果表明,基于拓展稀疏表示模型和LC-KSVD的人脸识别具有高识别率和低识别速度,并且有很好的鲁棒性。
- 张建明何双双吴宏林熊兵李艺敏
- 关键词:字典学习人脸识别