杨易
- 作品数:2 被引量:16H指数:2
- 供职机构:浙江大学计算机科学与技术学院更多>>
- 发文基金:国家自然科学基金国家杰出青年科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于综合推理的多媒体语义挖掘和跨媒体检索被引量:12
- 2009年
- 为了更准确地进行跨媒体检索,需要挖掘、学习不同类型多媒体对象之间的语义关联,为此提出一种基于综合推理模型的多媒体语义挖掘和跨媒体检索技术.首先根据多媒体对象的底层特征构造推理源,根据多媒体对象的共生关系构造影响源场来进行综合推理,并构造出多媒体语义空间;然后针对不同检索例子,根据伪相关反馈为每一个检索例子自适应地选择不同的检索方法进行跨媒体检索.为了处理检索例子不在训练集合内的情况,提出了两阶段学习方法完成检索;同时还提出了一种基于日志的长程反馈学习算法,以提高系统性能.实验结果证明,该技术能够准确地挖掘多媒体语义,多媒体文档检索和跨媒体检索效果准确且稳定.
- 杨易郭同强庄越挺王文华
- 关键词:跨媒体检索多媒体文档
- 视觉知识:跨媒体智能进化的新支点被引量:4
- 2022年
- 回顾跨媒体智能的发展历程,分析跨媒体智能的新趋势与现实瓶颈,展望跨媒体智能的未来前景。跨媒体智能旨在融合多来源、多模态数据,并试图利用不同媒体数据间的关系进行高层次语义理解与逻辑推理。现有跨媒体算法主要遵循了单媒体表达到多媒体融合的范式,其中特征学习与逻辑推理两个过程相对割裂,无法综合多源多层次的语义信息以获得统一特征,阻碍了推理和学习过程的相互促进和修正。这类范式缺乏显式知识积累与多级结构理解的过程,同时限制了模型可信度与鲁棒性。在这样的背景下,本文转向一种新的智能表达方式——视觉知识。以视觉知识驱动的跨媒体智能具有多层次建模和知识推理的特点,并易于进行视觉操作与重建。本文介绍了视觉知识的3个基本要素,即视觉概念、视觉关系和视觉推理,并对每个要素展开详细讨论与分析。视觉知识有助于实现数据与知识驱动的统一框架,学习可归因可溯源的结构化表达,推动跨媒体知识关联与智能推理。视觉知识具有强大的知识抽象表达能力和多重知识互补能力,为跨媒体智能进化提供了新的有力支点。
- 杨易庄越挺潘云鹤