针对复杂环境下自主水下航行器(autonomous underwater vehicle,AUV)组合导航系统中存在噪声不确定或者易发生变化的情况,提出一种贝叶斯网络增强型交互式多模型(interactive multiple model filter based on Bayesian network,BN-IMM)滤波算法。该算法在多模型估计基础上,引入特征变量,并根据变量与系统模型之间存在的因果关系建立贝叶斯网络;利用贝叶斯网络参数修正多模型估计中的模型切换概率,能够降低多模型算法中真实模式识别对先验知识的依赖性。该算法能够解决交互式多模型(interactive multiple model,IMM)算法中模型转换存在滞后、模型概率易发生跳变等问题,增强多模型算法的自适应能力。以陀螺和加速度计的输出作为特征变量建立贝叶斯网络,对AUV组合导航系统进行仿真,结果表明所提出的BN-IMM算法相比于传统的IMM算法能够显著提高机动状态时模型转换速度和估计精度。