Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
The stability problem of weak grid connected converter interfaced generation(CIG)cannot be ignored.For multiple weak grid connected CIGs with different parameters,the system oscillation characteristics and equivalence methods still need to be further studied.This paper first discusses the oscillation characteristics when CIGs are perfectly coupled,perfectly decoupled and their general conditions respectively.Based on the Monte Caro simulation,the number of critical eigenvalues,the participation of each CIG to critical eigenvalues and the correlative parameters to participation are analyzed.Then the single-CIG and multi-CIG equivalence methods are proposed for stations containing nonidentical CIGs.The CIG parameters of a single-CIG equivalent model are identified based on the consistency of the output admittance characteristics.According to the different participations of CIGs with critical eigenvalues,the station is equivalent to a multi-CIG model.Results of large simulation samples show that the two equivalent models can both preserve the critical eigenvalues very well,and can be used for stability analysis.Furthermore,the multi-CIG equivalent model can also very well reflect the participation of CIGs in detailed models,and can be used for damping control study.