Covalent organic framework(COF)monolayers,with atomically thin,ordered networks,and rich functionality,are widely studied due to their unusual structure/property relationships.However,synthesizing COF monolayer has remained an unmet challenge due to the difficulty of controlling reactions at the monolayer limit with large-scale uniformity.The identification and development of new reactions and polymerization conditions are critical for the further advancement of COF monolayer materials.Moreover,as one-molecule-thick a freestanding films,COF monolayer offers an ideal material system.Many advanced applications of COF monolayer have been explored in recent literature.This review provides an overview of the current state of precise synthetic strategies for COF monolayer,highlighting the advantages and limitations of different synthetic approaches and key challenges related to enhancing quality,and emphasizing the unique benefits of COF monolayer as both an ideal model system and for advanced applications.
Guangyuan FengXiaojuan LiMiao ZhangJiabi XuZhiping LiuLingli WuShengbin Lei
The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications.Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise.It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities.Here,we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane.By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope(STEM),we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice.The resultant SiC monolayers seamlessly connect with the graphene lattice,forming a planar structure distinct by a wide direct bandgap.Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion,providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional(2D)monolayers.
By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion.
Electrical modulation of luminescence is significant to modern light-emitting devices.Monolayer transition metal dichalcogenides are emerging direct-bandgap luminescent materials with unique excitonic properties,and the multiple exciton complexes provide new opportunities to modulate the property of luminescence in atomically thin semiconductors.Here,we report an electrical control of exciton emission in the oscillator strength and spatial distribution of excitons in a monolayer WS2.Effective modulation of excitonic emission intensity with a degree of modulation of~92%has been demonstrated by an electric field at room temperature.The spatial carrier redistribution tuned by a lateral electric field results in distinct excitonic emission patterns by design.The modulation approach to exciton oscillator strength and distribution provides an efficient way to investigate the exciton diffusion dynamics and to construct electrically tunable optoelectronic devices.
Yanming WangJunrong ZhangTianhua RenMeng XiaLong FangXiangyi WangXingwang ZhangKai ZhangJunyong Wang
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).
Quantum anomalous Hall(QAH) insulators have highly potential applications in spintronic device. However,available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN_(2) monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of C = ±3 from first-principles calculations. Without spin-orbit coupling(SOC),the 1T-PrN_(2) monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number(±1) can be produced when the magnetic moment breaks all twofold rotational symmetries in the xy plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the z-axis, the system exhibits high Chern number QAH effect with C = ±3.Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.
Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels.In this paper,we have systematically investigated the hydrogen storage properties of neutral and negatively charged C_(9)N_(4) monolayer based on density functional theory(DFT).Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C_(9)N_(4) monolayer to H2 molecules.The gravimetric density of negatively charged C_(9)N_(4) monolayer can reach up to 10.80 wt% when fully covered with hydrogen.Unlike other hydrogen storage methods,the storage and release processes happen automatically upon introducing or removing extra electrons.Moreover,these operations can be easily adjusted through activating or deactivating the charging voltage.As a result,the method is easily reversible and has tunable kinetics without requiring particular activators.Significantly,C_(9)N_(4) is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity.Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.
2D materials are promising candidates as nonlinear optical components for on-chip devices due to their ultrathin structure. In general, their nonlinear optical responses are inherently weak due to the short interaction thickness with light. Recently, there has been great interest in using quasi-bound states in the continuum (q-BICs) of dielectric metasurfaces, which are able to achieve remarkable optical near-field enhancement for elevating the second harmonic generation (SHG) emission from 2D materials. However, most studies focus on the design of combining bulk dielectric metasurfaces with unpatterned 2D materials, which suffer considerable radiation loss and limit near-field enhancement by high-quality q-BIC resonances. Here, we investigate the dielectric metasurface evolution from bulk silicon to monolayer molybdenum disulfide (MoS2), and discover the critical role of meta-atom thickness design on enhancing near-field effects of two q-BIC modes. We further introduce the strongcoupling of the two q-BIC modes by oblique incidence manipulation, and enhance the localized optical field on monolayer MoS2dramatically. In the ultraviolet and visible regions, the MoS2SHG enhancement factor of our design is 105times higher than that of conventional bulk metasurfaces, leading to an extremely high nonlinear conversion efficiency of 5.8%. Our research will provide an important theoretical guide for the design of high-performance nonlinear devices based on 2D materials.
Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
Anir S.SharbirinRebekah E.KongWendy B.MatoTrang Thu TranEunji LeeJolene W.P.KhorAfrizal L.FadliJeongyong Kim
The Young's modulus, shear modulus and Poisson's ratio of monolayer arsenene with different sizes were calculated by finite element method, so as to explore the influence of dimension and orientation on the mechanical properties of monolayer arsenene. The calculation results show that the small size has a significant effect on the mechanical properties of the monolayer arsenene. The smaller the size, the larger the Young's modulus and Poisson's ratio of the monolayer arsenene. The size change has a great influence on the Young's modulus of the arsenene handrail direction, and the Young's modulus of the zigzag direction is not sensitive to the size change. Similarly, the size change has a significant effect on the shear modulus of arsenene in the handrail direction, while the shear modulus in the zigzag direction has no significant effect on its size change. For the Poisson's ratio, the situation is just the opposite, and the effect of the size change on the Poisson's ratio of the arsenene zigzag direction is greater than that of the handrail direction.