To estimate the geometric characteristics, especially wet areas and section areas, of three dimensional numerical conceptual aircraft models, a method based on surface elements is proposed. On the premise that numerous surface elements are generated to represent each component surface, a component wet area of the surface is estimated by adding up the areas of such elements that are not covered by any other component surfaces. The elements are also used to get the section polygons of such composite surfaces as the whole aircraft at a given body station, then a section area is approximated with the sum of trapezoidal areas between such sides of polygons that are not covered by any other component and a reference axis. Practical application to a computer aided aircraft conceptual design system shows that the methed is applicable to different kinds of conceptual aircraft models and its precision is satisfying to the conceptual design.
To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.