您的位置: 专家智库 > >

黄雪芳

作品数:3 被引量:8H指数:2
供职机构:宁夏大学数学计算机学院更多>>
发文基金:霍英东青年教师基金教育部科学技术研究重点项目国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 2篇期刊文章
  • 1篇学位论文

领域

  • 3篇理学

主题

  • 3篇非均匀网格
  • 3篇差分格式
  • 2篇对流扩散方程
  • 2篇紧致差分格式
  • 2篇边界层
  • 1篇紧致
  • 1篇紧致格式
  • 1篇泊松
  • 1篇泊松方程
  • 1篇差分方法

机构

  • 3篇宁夏大学

作者

  • 3篇黄雪芳
  • 2篇葛永斌
  • 2篇郭锐

传媒

  • 1篇工程数学学报
  • 1篇甘肃联合大学...

年份

  • 1篇2014
  • 1篇2013
  • 1篇2012
3 条 记 录,以下是 1-3
排序方式:
一维非定常对流扩散方程非均匀网格上的高精度紧致差分格式被引量:5
2014年
本文在非均匀网格上给出了求解非定常对流扩散方程的一种高精度紧致差分格式,特别适合边界层和大梯度等问题的求解.从稳态对流扩散方程入手,首先,基于非均匀网格上的泰勒级数展开对空间导数项进行离散,然后对时间项采用二阶向后欧拉差分公式,从而得到一维非定常对流扩散方程在非均匀网格上的三层全隐式紧致差分格式.新格式在时间具有二阶精度,空间具有三到四阶精度,并且是无条件稳定的.最后,通过数值实验验证了本文格式的精确性,以及在处理诸如边界层和大梯度问题上的优势.
黄雪芳郭锐葛永斌
关键词:非均匀网格边界层
非定常对流扩散方程非均匀网格上的高精度紧致ADI差分方法
本文主要研究了非定常对流扩散方程在非均匀网格上的高精度紧致ADI差分方法,该方法很好地结合了高精度紧致差分格式和ADI方法的优势,为求解非定常对流扩散方程提供了一类精确、高效的数值方法。本文首先基于函数的泰勒级数展开和余...
黄雪芳
关键词:对流扩散方程差分格式
二维泊松方程非均匀网格上的高精度紧致差分格式被引量:2
2012年
提出了数值求解二维泊松方程基于非均匀网格的高阶紧致差分格式,通过选取合适的网格分布参数求解具有边界层的数值算例,空间可以达到四阶精度.并与均匀网格上的计算结果进行比较,充分验证了本文非均匀网格高精度紧致格式的精确性和优越性.
郭锐黄雪芳葛永斌
关键词:泊松方程非均匀网格紧致差分格式边界层
共1页<1>
聚类工具0