The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel: the 3p unoccupied orbital of Si in dimethylmethylenesilylene and the π orbital of ethene forming the π→p donor-acceptor bond, resulting in the formation of three-membered ring intermediate (INT1); INT1 then isomerizes to a four-membered ring silylene (P2), which is driven by ring-enlargement effect; due to sp3 hybridization of Si atom in P2, P2 further combines with ethene to form a silicic bis-heterocyclic compound.
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dichloro-germylene carbene and formaldehyde has been investigated with CCSD(T)//MP2/6-31G^* method, from the potential energy profile, we predict that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the 2p unoccupied orbital of the C atom in dichloro-germylene carbene insert the π orbital of formaldehyde from oxygen side, resulting in the formation of intermediate. In the intermediate and between two reactants, because of the two bonding π orbital in dichloro-germylene carbene and formaldehyde have occurred [2+2] cycloaddition reaction, forming two four- membered ring compounds in which Ge and O are in the opposite orientation and in the syn-position, respectively. Because of the unsaturated property of C atom from carbene in the two four-membered ring compounds, they further reacts with formaldehyde, resulting in the generation of two germanic bis-heterocyclic compounds.