杜宇宁
- 作品数:2 被引量:21H指数:2
- 供职机构:清华大学信息科学技术学院计算机科学与技术系更多>>
- 发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于二次相似度函数学习的行人再识别被引量:7
- 2016年
- 行人再识别是一个有着非常重要现实意义的研究问题,它可以应用于刑事侦查、在公共场所中寻找丢失的小孩、个人相册管理以及电子商务等领域.同时由于光照、视角、人的姿态以及背景的变化,同一个人的表观在不同的监控视频中往往变化很大,解决行人再识别问题也非常有挑战性.在设计行人再识别算法时,给定行人图像的特征,考虑到不同的特征分量具有不同的区分能力,学习合适的相似度度量非常重要.度量学习是一类学习相似度度量的主流算法,这些算法通过学习一个马氏距离相似度函数(Mahalanobis Similarity Function,MSF)来估计一对行人图像的相似度.然而MSF只与特征差分空间有关,忽略了一对图像中每个个体的表观特征,对于同一个人在不同场景中很大的表观变化的捕捉能力有限.为了加强相似度函数与每个个体的表观特征的联系,该文提出通过学习一个二次相似度函数(Quadratic Similarity Function,QSF),来估计一对行人图像的相似度.QSF是MSF的泛化形式,不但描述了一对行人图像的互相关关系,而且关联了一对行人图像的自相关关系,可以更好地捕捉同一个人在不同监控视频中很大的表观变化.为了学习QSF,该文分别从分类和排序的角度出发,设计两种不同的优化目标,提出了两种不同的学习QSF的算法.由行人再识别的公共数据集VIPeR和CUHK的实验表明,这两种不同的算法都可以学习到有效的QSF,识别性能优于已有的行人再识别算法.
- 杜宇宁艾海舟
- 关键词:视频监控
- 基于统计推断的行人再识别算法被引量:15
- 2014年
- 行人再识别是指给定一张行人图像,在已有的可能来源于非交叠摄像机视场的行人图像库中,识别出与此人相同的图像。研究该问题有着非常重要的现实意义,同时也面临许多挑战。该文提出一种基于统计推断的行人再识别算法。该算法从统计推断的角度出发学习两幅行人图像的相似度度量函数,利用此函数从行人图像库中搜索待查询的人。在公共数据集VIPeR上的实验表明,该算法性能优于已有的行人再识别算法,学习相似度度量函数的时间花销明显少于已有的基于学习的算法,并且在只有少量训练样本时,缓解了学习相似度度量函数的过拟合问题。
- 杜宇宁艾海舟
- 关键词:计算机视觉统计推断