基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。
利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多元散射校正(Multiplicative scatter correction,MSC)和标准正态变量变换( Standard normal variable correction,SNV)三种预处理后,分别利用偏最小二乘(Partial Least Squares,PLS)和多元线性回归(Multiple linear regression,MLR)挖掘光谱信息与鸡肉色泽参数(L^*、a^*、b^*)及嫩度参考值之间的定量关系。结果显示,经MFS预处理的近红外光谱(486个波长)构建的全波段PLS回归模型(F-PLS)预测L^*(RP=0.904,RMSEP=2.036)、b^*(RP=0.908,RMSEP=1.577)和嫩度(RP=0.948,RMSEP=1.596)效果更好。为提高预测效率,采用Stepwise算法筛选最优波长优化F-PLS模型,结果显示,从SNV预处理光谱筛选的14个最优波长构建MLR回归模型预测L^*值(RP=0.894,RMSEP=2.160)效果较优,从SNV预处理光谱筛选的13最优波长构建的O-PLS回归模型预测b^*值(RP=0.877,RMSEP=1.811)效果较优,从MFS预处理光谱筛选的20个最优波长构建O-PLS回归模型预测嫩度值(RP=0.888,RMSEP=2.408N)效果较优。本试验表明,利用近红外高光谱成像技术结合Stepwise算法可实现鸡肉色泽参数L^*、b^*值以及嫩度的快速评估。
利用长波近红外光谱(900~1700 nm)联用偏最小二乘(Partial Least Squares,PLS)算法快速评估小麦水分含量。通过采集7个不同品种小麦籽粒(百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18)的近红外反射光谱信息,经高斯滤波平滑(Gaussian Filtering Smoothing,GFS)、多元散射校正(Multiplicative Scatter Correction,MSC)和标准正态变量变换(Standard Normal Variable Correction,SNV)三种预处理后,分别利用偏最小二乘法(Partial Least Squares,PLS)挖掘光谱信息与小麦水分之间的定量关系。结果显示,经GFS预处理的近红外光谱(100个波长)构建的全波段PLS回归模型(F-PLS)的预测相关系数(RP=0.927)、预测误差(RMSEP=1.596%)和鲁棒性(ΔE=0.064)均优于另外两种光谱。采用Regression coefficient算法筛选最优波长优化F-PLS模型,以提高预测效率。结果显示,从GFS预处理光谱筛选的29个最优波长构建的O-PLS回归模型预测精度及鲁棒性均较好(R_P=0.909,RMSEP=0.229%,ΔE=0.078)。本试验表明,利用长波近红外光谱技术来快速无接触评估小麦籽粒含水率的潜力巨大。