您的位置: 专家智库 > >

金秋

作品数:2 被引量:4H指数:1
供职机构:辽宁工程技术大学软件学院更多>>
发文基金:辽宁省教育厅高等学校科学研究项目国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 2篇显著性检测
  • 1篇多窗口
  • 1篇图像
  • 1篇物性
  • 1篇先验

机构

  • 2篇辽宁工程技术...

作者

  • 2篇刘万军
  • 2篇郭鹏飞
  • 2篇金秋

传媒

  • 1篇计算机工程与...
  • 1篇中国图象图形...

年份

  • 1篇2018
  • 1篇2017
2 条 记 录,以下是 1-2
排序方式:
融合目标增强与稀疏重构的显著性检测被引量:1
2017年
目的为了解决图像显著性检测中存在的边界模糊,检测准确度不够的问题,提出一种基于目标增强引导和稀疏重构的显著检测算法(OESR)。方法基于超像素,首先从前景角度计算超像素的中心加权颜色空间分布图,作为前景显著图;由图像边界的超像素构建背景模板并对模板进行预处理,以优化后的背景模板作为稀疏表示的字典,计算稀疏重构误差,并利用误差传播方式进行重构误差的校正,得到背景差异图;最后,利用快速目标检测方法获取一定数量的建议窗口,由窗口的对象性得分计算目标增强系数,以此来引导两种显著图的融合,得到最终显著检测结果。结果实验在公开数据集上与其他12种流行算法进行比较,所提算法对具有不同背景复杂度的图像能够较准确的检测出显著区域,对显著对象的提取也较为完整,并且在评价指标检测上与其他算法相比,在MSRA10k数据集上平均召回率提高4.1%,在VOC2007数据集上,平均召回率和F检验分别提高18.5%和3.1%。结论本文提出一种新的显著检测方法,分别利用颜色分布与对比度方法构建显著图,并且在显著图融合时采用一种目标增强系数,提高了显著图的准确性。实验结果表明,本文算法能够检测出更符合视觉特性的显著区域,显著区域更加准确,适用于自然图像的显著性目标检测、目标分割或基于显著性分析的图像标注。
郭鹏飞金秋刘万军
融合似物性前景对象与背景先验的图像显著性检测被引量:3
2018年
为了在复杂背景图像中准确地提取出图像的显著区域,提出一种结合似物性前景对象与背景先验知识的图像显著性检测方法(OFOBP)。该方法首先对图像进行超像素分割,计算超像素颜色空间分布,得到初始显著图;利用似物性检测方法获取多个目标窗口,由窗口建立搜索区域,结合二值化的初始显著图优化目标窗口;再利用多窗口特征对超像素做前景对象预测,获取前景显著图;其次建立背景模板,计算稀疏重构误差获取背景先验图;最后融合两种显著图,得到最终显著检测结果。在公开数据集上与11种算法进行比较,本文算法能够较为准确地检测出显著区域,尤其是在复杂背景下对多个显著目标的检测,存在明显的优势。
郭鹏飞金秋刘万军
关键词:显著性检测
共1页<1>
聚类工具0